Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474091

RESUMO

Ubiquitin-like modifier-activating enzyme 6 (UBA6) is a member of the E1 enzyme family, which initiates the ubiquitin-proteasome system (UPS). The UPS plays critical roles not only in protein degradation but also in various cellular functions, including neuronal signaling, myocardial remodeling, immune cell differentiation, and cancer development. However, the specific role of UBA6 in cellular functions is not fully elucidated in comparison with the roles of the UPS. It has been known that the E1 enzyme is associated with the motility of cancer cells. In this study, we verified the physiological roles of UBA6 in lung cancer cells through gene-silencing siRNA targeting UBA6 (siUBA6). The siUBA6 treatment attenuated the migration of H1975 cells, along with a decrease in lysosomal Ca2+ release. While autophagosomal proteins remained unchanged, lysosomal proteins, including TRPML1 and TPC2, were decreased in siUBA6-transfected cells. Moreover, siUBA6 induced the production of multivesicular bodies (MVBs), accompanied by an increase in MVB markers in siUBA6-transfected H1975 cells. Additionally, the expression of the exosomal marker CD63 and extracellular vesicles was increased by siUBA6 treatment. Our findings suggest that knock-down of UBA6 induces lysosomal TRPML1 depletion and inhibits endosomal trafficking to lysosome, and subsequently, leads to the accumulation of MVBs and enhanced exosomal secretion in lung cancer cells.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Lisossomos/metabolismo , Corpos Multivesiculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo
2.
Foods ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540824

RESUMO

This study aimed to investigate the effects of jet-milling on the lutein extraction contents of spinach powder (SP), as well as the effects of pulsed electric field (PEF), as a non-thermal pasteurization technology, on the preservation of spinach juice (SJ) lutein contents. SP particles were divided into SP-coarse (Dv50 = 315.2 µm), SP-fine (Dv50 = 125.20 µm), and SP-superfine (Dv50 = 5.59 µm) fractions, and SP-superfine was added to SJ due to its having the highest contents of lutein extract. PEFs and thermal treatment were applied to evaluate the effects of preserving the lutein content of PEF during storage (25 days). The juice was then designated as untreated (no pasteurization), PEF-1,2 (SJ treated with PEF 20 kV/cm 110 kJ/L, 150 kJ/L), or Thermal-1,2 (SJ treated with 90 °C, 10 min and 121 °C, 15 min). The sizes and surface shapes of the superfine SP particles were more homogeneous and smoother than those of the other samples. SJ made with SP-superfine and treated with PEF had the highest lutein content and antioxidant activities among the group during storage. A complex of jet-milling and PEF could have great potential as a method to improve the lutein contents of lutein-enriched juice in the food industry.

3.
Foods ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38201192

RESUMO

This study applied pulsed electric fields (PEFs) to accelerate the withering and drying processes during cold-brewed black tea production. PEF pretreatment was administered at 1.0, 1.5, and 2.0 kV/cm electric field strengths, combined with varying withering times from 8 to 12 hr. During the 12-hour withering process, the redness value (a*) and total color change (∆E) of PEF-treated leaves significantly increased (p < 0.05). Furthermore, the homogenous redness of tea leaves during fermentation depended on the PEF strength applied. In addition, PEF pretreatment remarkably reduced the drying time, up to a 50% reduction at a 2.0 kV/cm field strength. Additionally, the 2.0 kV/cm PEF-pretreated black tea exhibited a notable 42% increase in theaflavin (TF) content and a 54% increase in thearubigin (TR) content. Sensory evaluation scores were highest for black tea that received PEF pretreatment at 2.0 kV/cm. These findings highlight the significant potential of PEFs in enhancing the efficiency of withering and drying processes while positively impacting the physicochemical and sensory properties of cold-brewed black tea.

4.
Antioxidants (Basel) ; 12(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38136141

RESUMO

Cholesterol trafficking is initiated by the endocytic pathway and transported from endo/lysosomes to other intracellular organelles. Deficiencies in cholesterol-sensing and binding proteins NPC1 and NPC2 induce accumulation in lysosomes and the malfunction of trafficking to other organelles. Each organelle possesses regulatory factors to induce cholesterol trafficking. The mutation of NPC1 and NPC2 genes induces Niemann-Pick disease type C (NPDC), which is a hereditary disease and causes progressive neurodegeneration, developmental disability, hypotonia, and ataxia. Oxidative stress induces damage in NPDC-related intracellular organelles. Although studies on the relationship between NPDC and oxidation are relatively rare, several studies have reported the therapeutic potential of antioxidants in treating NPDC. Investigating antioxidant drugs to relieve oxidative stress and cholesterol accumulation is suggested to be a powerful tool for developing treatments for NPDC. Understanding NPDC provides challenging issues in understanding the oxidative stress-lysosome metabolism of the lipid axis. Thus, we elucidated the relationship between complexes of intracellular organelles and NPDC to develop our knowledge and suggested potential antioxidant reagents for NPDC therapy.

5.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445932

RESUMO

Dexmedetomidine (Dex) has analgesic and sedative properties and anti-inflammatory functions. Although the effects of Dex on arthritis have been revealed, the physiological mechanism underlying the interaction between Dex and rheumatoid arthritis (RA)-mediated inflammatory cytokines has not been fully studied. Inflamed and migrated fibroblast-like synoviocytes (FLSs) are involved in RA severity. Thus, we aimed to determine the effects of Dex on RA-FLSs treated with inflammatory cytokines and a growth factor as multiple stimulating inputs. TNF-α, IL-6, and EGF as multiple stimulating inputs increased the cAMP concentration of RA-FLSs, while Dex treatment reduced cAMP concentration. Dex reduced electroneutral sodium-bicarbonate cotransporter 1 (NBCn1) expression, NBC activity, and subsequent RA-FLS migration. The mRNA expression levels of RA-related factors, such as inflammatory cytokines and osteoclastogenesis factors, were enhanced by multiple-input treatment. Notably, Dex effectively reduced these expression levels in RA-FLSs. These results indicate that multiple inflammatory or stimulating inputs enhance RA-FLS migration, and treatment with Dex relieves activated RA-FLSs, suggesting that Dex is a potential therapeutic drug for RA.


Assuntos
Artrite Reumatoide , Dexmedetomidina , Sinoviócitos , Humanos , Sinoviócitos/metabolismo , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Agonistas Adrenérgicos/farmacologia , Fibroblastos/metabolismo , Células Cultivadas , Proliferação de Células , Movimento Celular
6.
Cells ; 12(14)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37508500

RESUMO

Lysosomes are responsible for protein degradation and clearance in cellular recycling centers. It has been known that the lysosomal chloride level is enriched and involved in the intrinsic lysosomal function. However, the mechanism by which chloride levels can be sensed and that of the chloride-mediated lysosomal function is unknown. In this study, we verified that reduced chloride levels acutely induced lysosomal calcium release through TRPML1 and lysosomal repositioning toward the juxtanuclear region. Functionally, low chloride-induced lysosomal calcium release attenuated cellular migration. In addition, spontaneous exposure to low chloride levels dysregulated lysosomal biogenesis and subsequently induced delayed migration and promoted apoptosis. Two chloride-sensing GXXXP motifs in the TRPML1 were identified. Mutations in the GXXXP motif of TRPML1 did not affect chloride levels, and there were no changes in migratory ability. In this study, we demonstrated that the depletion of chloride induces reformation of the lysosomal calcium pool and subsequently dysregulated cancer progression, which will assist in improving therapeutic strategies for lysosomal accumulation-associated diseases or cancer cell apoptosis.


Assuntos
Canais de Potencial de Receptor Transitório , Apoptose , Cálcio/metabolismo , Cloretos/metabolismo , Lisossomos/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Humanos
7.
Int J Food Microbiol ; 397: 110221, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126887

RESUMO

Root vegetables, which are in close contact with soil, are particularly vulnerable to soil contamination or decay as they can be contaminated from multiple sources, including primary production and processing. This study investigated effective washing conditions to reduce the microbial contamination of potatoes by using soaking and shaking in the washing process. The reduction of Escherichia coli, Listeria monocytogenes, and Murine norovirus 1 (MNV-1) in four washing processes (soaking only, shaking only, combined soaking-shaking I, and combined soaking-shaking I-shaking II) were compared. The numbers of E. coli and L. monocytogenes decreased by 0.55 and 0.49 log CFU/g after shaking only, 1.96 and 1.80 log CFU/g after soaking, 2.07 and 1.67 log CFU/g after soaking-shaking I, and 2.42 and 1.90 log CFU/g after soaking-shaking I-shaking II, respectively. The combined process reduced the microbial contamination more efficiently than shaking only. The reduction of E. coli in the washing process was higher than that of L. monocytogenes by approximately 0.5 logs. MNV-1 showed a reduction in the soaking and shaking steps by 1.34 and 1.98 log GC/100 g, with no significant reduction observed after the combination process. A combined process of soaking-shaking I-shaking II was effective to eliminate E. coli, L. monocytogenes, and MNV-1 from potatoes during the handling and washing process.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Norovirus , Solanum tuberosum , Animais , Camundongos , Microbiologia de Alimentos , Manipulação de Alimentos , Contagem de Colônia Microbiana
8.
J Sci Food Agric ; 103(11): 5462-5471, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37046391

RESUMO

BACKGROUND: Demands for foods conducive to eye health have been on the increase in the global healthcare sector. Marigold powder as a major source of lutein was utilized to produce lutein-fortified breads for ocular health. The physicochemical characteristics of the doughs and breads were investigated in terms of rheology, water mobility, and protein secondary structures. RESULTS: The incorporation of marigold powder decreased the water absorption of doughs without significantly altering thermomechanical properties. With a range of fortification levels (1-3%), marigold powder led to decreased storage and loss modulus of doughs by weakening their gluten network, which was supported by their T2 relaxation times. The resistance of the doughs weakened with increasing levels of marigold powder, while their extensibilities significantly incremented. Fourier transform infrared spectral deconvolution revealed the changes in wheat protein structures upon marigold powder incorporation, in which the proportion of ß-turn increased at the expense of ß-sheet ratio. The breads with marigold powder displayed increased specific volume from 4.034 to 4.368 mL g-1 , accompanied by softer textures. The baking process led to heat-induced losses in lutein concentration of less than 10% within the crumb and approximately 30% in the crust. CONCLUSION: The use of marigold powder induced changes in protein secondary structure and extensional features of doughs, contributing to increased loaf volume and softer texture. Overall, this study provides fundamental information on the rheological and structural effects of marigold powder in a wheat bread system, consequently encouraging the food industry to utilize marigold power as a functional food ingredient. © 2023 Society of Chemical Industry.


Assuntos
Pão , Triticum , Pão/análise , Triticum/química , Luteína , Pós , Água , Reologia , Farinha/análise
9.
Carbohydr Polym ; 299: 120178, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876793

RESUMO

Advanced technologies for producing high-quality low molecular weight hyaluronic acid (LMW-HA) are required from the perspective of cost-efficiency and biosafety. Here, we report a new LMW-HA production system from high molecular weight HA (HMW-HA) using vacuum ultraviolet TiO2 photocatalysis with an oxygen nanobubble system (VUV-TP-NB). The VUV-TP-NB treatment for 3 h resulted in a satisfactory LMW-HA (approximately 50 kDa measured by GPC) yield with a low endotoxin level. Further, there were no inherent structural changes in the LMW-HA during the oxidative degradation process. Compared with conventional acid and enzyme hydrolysis methods, VUV-TP-NB showed similar degradation degree with viscosity though reduced process time by at least 8-fold. In terms of endotoxin and antioxidant effects, degradation using VUV-TP-NB demonstrated the lowest endotoxin level (0.21 EU/mL) and highest radical scavenging activity. This nanobubble-based photocatalysis system can thus be used to produce biosafe LMW-HA cost-effectively for food, medical, and cosmetics applications.


Assuntos
Endotoxinas , Ácido Hialurônico , Hidrólise , Vácuo , Oxigênio
10.
Foods ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36765959

RESUMO

In this study, the effects of pulse electric field (PEF) treatment on the tenderization of beef semitendinosus muscle were investigated. An adjustable PEF chamber was designed to make direct contact with the surface of the beef sample without water as the PEF-transmitting medium. PEF treatment was conducted with electric field strengths between 0.5 and 2.0 kV/cm. The pulse width and pulse number were fixed as 30 µs and 100 pulses, respectively. The impedance spectrum of PEF-treated beef indicated that PEF treatments induced structural changes in beef muscle, and the degree of the structural changes was dependent on the strength of the electric field. Cutting force, hardness, and chewiness were significantly decreased at 2.0 kV/cm (35, 37, and 34%, respectively) (p < 0.05). Troponin-T was more degraded by PEF treatment at 2.0 kV/cm intensity (being degraded by 90%). The fresh quality factors such as color and lipid oxidation were retained under a certain level of PEF intensity (1.0 kV/cm). These findings suggest that PEF treatment could tenderize beef texture while retaining its fresh quality.

11.
Foods ; 12(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36766037

RESUMO

This study aimed to investigate and optimize the quality and sensory properties of baked products with lutein-enriched marigold flower powder (MP). Lutein-enriched marigold flowers produced via hydroponic methods using LED lights were used as a functional material in sponge cakes to increase lutein content. MP particles were divided into coarse (Dv50 = 315 µm), fine (Dv50 = 119 µm), and superfine MP (Dv50 = 10 µm) fractions and added to the sponge cake after being designated to control (sponge cake prepared without MP), coarse MPS (sponge cake prepared with coarse MP), fine MPS (sponge cake prepared with fine MP), and superfine MPS (sponge cake prepared with superfine MP) groups. The sizes and surface properties of superfine MP particles were more homogeneous and smoother than the other samples. As the particle size decreased, the specific volume increased, whereas baking loss, hardness, and chewiness of the sponge cake decreased. Superfine MP and superfine MPS had the highest lutein content. The flavor of marigold and the overall acceptability of sponge cake with superfine MP were 7.90 ± 0.97 and 7.55 ± 0.76, which represents the highest values among the samples. The results of this study have shown that jet milling can contribute to improvements in texture, lutein content, and sensory qualities for baked products with MP.

12.
Foods ; 12(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36766117

RESUMO

The pulsed electric field (PEF) is a non-thermal food processing technology that induces electroporation of the cell membrane thus improving mass transfer through the cell membrane. In this study, the drying and rehydration kinetics, microstructure, and carotenoid content of carrot (Daucus carota) pretreated by PEF during convective drying at 50 °C were investigated. The PEF treatment was conducted with different field strengths (1.0-2.5 kV/cm) using a fixed pulse width of 20 µs and at a pulse frequency of 50 Hz. The PEF 2.5 kV/cm showed the shortest drying time, taking 180 min, whereas the control required 330 min for the same moisture ratio, indicating a 45% reduction in drying time. The rehydration ability also increased as the strengths of PEF increased. PEF 2.5 kV/cm resulted in 27.58% increase in moisture content compared to the control after rehydration (1 h). Three mathematical models were applied to the drying and rehydration data; the Page and Peleg models were selected as the most appropriate models to describe the drying and rehydration kinetics, respectively. The cutting force of the sample was decreased as the strength of PEF increased, and a more homogeneous cellular structure was observed in the PEF pretreatment group. The reduction in drying time by PEF was beneficial to the carotenoid content, and PEF 2.5 kV/cm showed the highest preservation content of carotenoid. Overall, these results suggested that the pretreatment of PEF and the drying and rehydration rate influence the quality of products, functional components, and cellular structure.

13.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555115

RESUMO

PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.


Assuntos
Quinase 2 de Adesão Focal , Neoplasias , Quinase 2 de Adesão Focal/metabolismo , Quinases da Família src/metabolismo , Fosforilação , Quinase 1 de Adesão Focal/metabolismo
14.
Toxicol In Vitro ; 82: 105373, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35500753

RESUMO

Estrogen therapy has used to prevent bone loss in postmenopausal women. Although therapeutically enhanced estrogen levels have been suggested, patients are exposed to greater risks of nephrolithiasis and cancer. It has been known that oxalate or bicarbonate transporter SLC26A6 is involved in oxalate homeostasis and its deletion results in kidney stone formation and addressed that patients with kidney stones possess higher cancer risk. Thus, the mechanism of the interaction between estrogen and SLC26A6 and the effect of SLC26A6 on cancer cells should be elucidated. In this study, we investigated whether ß-estradiol treatment modulates SLC26A6 expression and its bicarbonate or oxalate transporting activity and affects the proliferative and migratory ability of A549 cells. The ß-estradiol stimulation attenuated oxalate or bicarbonate transporting activities through SLC26A6. Knockdown of SLC26A6 reduced transporter activity whereas enhanced cellular migration. ß-estradiol-mediated cellular migration was independent of SLC26A6 transporter activity, whereas enhanced SLC26A6 expression attenuated cellular migration even in the presence of ß-estradiol treatment. These results indicate ß-estradiol treatment enhances cancer cell migration and dysregulates oxalate transport by inhibiting SLC26A6 activity, suggesting reduced oxalate transporting activity may involve in the oxalate homeostasis.


Assuntos
Antiporters , Neoplasias Pulmonares , Antiporters/metabolismo , Bicarbonatos/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Oxalatos/metabolismo , Oxalatos/farmacologia , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
15.
Antioxidants (Basel) ; 11(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35624861

RESUMO

The ubiquitin-proteasome system (UPS) is the main proteolytic pathway by which damaged target proteins are degraded after ubiquitination and the recruit of ubiquitinated proteins, thus regulating diverse physiological functions and the maintenance in various tissues and cells. Ca2+ signaling is raised by oxidative or ER stress. Although the basic function of the UPS has been extensively elucidated and has been continued to define its mechanism, the precise relationship between the UPS and Ca2+ signaling remains unclear. In the present review, we describe the relationship between the UPS and Ca2+ signaling, including Ca2+-associated proteins, to understand the end point of oxidative stress. The UPS modulates Ca2+ signaling via the degradation of Ca2+-related proteins, including Ca2+ channels and transporters. Conversely, the modulation of UPS is driven by increases in the intracellular Ca2+ concentration. The multifaceted relationship between the UPS and Ca2+ plays critical roles in different tissue systems. Thus, we highlight the potential crosstalk between the UPS and Ca2+ signaling by providing an overview of the UPS in different organ systems and illuminating the relationship between the UPS and autophagy.

16.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806911

RESUMO

Metastatic features of breast cancer in the brain are considered a common pathology in female patients with late-stage breast cancer. Ca2+ signaling and the overexpression pattern of Ca2+ channels have been regarded as oncogenic markers of breast cancer. In other words, breast tumor development can be mediated by inhibiting Ca2+ channels. Although the therapeutic potential of inhibiting Ca2+ channels against breast cancer has been demonstrated, the relationship between breast cancer metastasis and Ca2+ channels is not yet understood. Thus, we focused on the metastatic features of breast cancer and summarized the basic mechanisms of Ca2+-related proteins and channels during the stages of metastatic breast cancer by evaluating Ca2+ signaling. In particular, we highlighted the metastasis of breast tumors to the brain. Thus, modulating Ca2+ channels with Ca2+ channel inhibitors and combined applications will advance treatment strategies for breast cancer metastasis to the brain.

17.
Soft Robot ; 8(5): 564-576, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33216700

RESUMO

Owing to their compliance, lightweight, and high force density characteristics, pneumatic actuation systems have been widely implemented in various soft robots. However, pneumatic actuation systems exhibit low efficiency, poor control performance, and high noise; these make it extremely challenging to widely employ a pneumatic actuation system in mobile robots. To overcome these limitations, many researches were conducted on recycling the compressed air within such systems. However, the proposed approaches do not consider the system efficiency and exhaust performance of pneumatic systems. Therefore, this article proposes a recirculation system using a novel soft re-air valve based on the cardiac structure of fish. In particular, the proposed recirculation system recycles the compressed air to improve the system efficiency and pressurizing performance, and the soft re-air valve simultaneously prevents a decrease in the depressurizing performance. For the validation of the proposed scheme, experiments were conducted to evaluate the system efficiency, control performance, and exhaust noise. In contrast to conventional pneumatic systems, the experimental results revealed that the proposed system increased the overall system efficiency by 47.58%, reduced the position root mean square error by 8.16%, and reduced the exhaust noise by 47.52%.


Assuntos
Ar Comprimido , Robótica , Cateteres , Desenho de Equipamento , Fenômenos Mecânicos , Robótica/métodos
18.
Foods ; 9(11)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266446

RESUMO

The objective of this study was to amplify vitamin D2 in white button mushrooms using ultraviolet (UV-B) irradiation and to prepare a vitamin D2-fortified superfine mushroom powder through jet milling. Mushrooms irradiated with UV-B for 30 min had a vitamin D2 concentration of 8.19 µg/g, an amount about 400 times greater than that of the control (0.02 µg/g). The vitamin D2-fortified mushrooms were then freeze-dried and conventionally ground or jet-milled to obtain coarse (Dv50 = 231 µm), fine (Dv50 = 106.3 µm), and superfine (Dv50 = 7.1 µm) powders. The vitamin D2 content was retained during the preparation of the powders. The physical characteristics were evaluated by scanning electron microscopy and hydration properties. The superfine powder of vitamin D2-amplified mushrooms was suitable for use as a functional ingredient because its roughness was significantly reduced, and it had a neutral aroma and taste as determined by descriptive analysis.

19.
Foods ; 9(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207640

RESUMO

The effects of a consecutive process of pulsed electric field (PEF) treatment, sous-vide cooking, and reheating on the properties of beef semitendinosus muscle were investigated. Fresh meats were PEF-treated with different electric field strengths of 1.0, 1.5, and 2.0 kV/cm, and then the control and PEF-pretreated beef samples were sous-vide cooked at 60 °C for up to 24 h. The PEF pretreatment resulted in tenderization of the fresh meat proportional to the increase in the electric field strength. A significant decrease in cutting force (by 35%) was observed after PEF treatment at 2.0 kV/cm. The hardness and chewiness of the meat were also significantly reduced by PEF treatment. After sous-vide cooking, the PEF-pretreated samples exhibited a significantly reduced cutting force, redness value (a*), and myoglobin content (mg/g) (p < 0.05). However, there were no significant differences in cooking loss and drip loss (p > 0.05). When the sous-vide-cooked meats were reheated in an oven (230 °C, 5 min), the reduced cutting force induced by the PEF pretreatment was retained.

20.
Pharmaceutics ; 12(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131531

RESUMO

Applications of nanoparticles in various fields have been addressed. Nanomaterials serve as carriers for transporting conventional drugs or proteins through lysosomes to various cellular targets. The basic function of lysosomes is to trigger degradation of proteins and lipids. Understanding of lysosomal functions is essential for enhancing the efficacy of nanoparticles-mediated therapy and reducing the malfunctions of cellular metabolism. The lysosomal function is modulated by the movement of ions through various ion channels. Thus, in this review, we have focused on the recruited ion channels for lysosomal function, to understand the lysosomal modulation through the nanoparticles and its applications. In the future, lysosomal channels-based targets will expand the therapeutic application of nanoparticles-associated drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...